# The RISING project at GSI and its first results

Presented by Take R. Saitoh, GSI, Germany for the RISING collaboration





### Rare ISotope INvestigation at GSI

At relativistic energies (~100 A MeV)

July 2003 ~ April 2005

- Coulomb excitation.
- Secondary fragmentation and nucleon removal

### With stopped beams

Fall 2005 ~ 2006

Decay study



### Rare ISotope INvestigation at GSI

At relativistic energies (~100 A MeV)

July 2003 ~ April 2005

- Coulomb excitation
- Secondary fragmentation and nucleon removal
- With stopped beams

Fall 2005 ~ 2006

Decay study

## Physics program of RISING at relativistic energies - Nuclei of interest

















R. Lozeva, Ph.D. thesis



- · 0.3 mm thick Si detectors
- Position sensitive. Position resolution ~3 mm

R. Lozeva, Ph.D. thesis



- · CsI detectors
- · Mass resolution : ~1%





# RISING at relativistic energies : Ge detector array





- 15 EUROBALL cluster detectors
  - · 7 crystals each
  - A total of 105 crystals
- · 8 MINIBALL detectors (end of 2004)
- · Wall-like array at forward angle
  - Large Lorentz boost (β~0.4)
  - Optimum Doppler shift correction
  - · Minimizing Doppler broadening

## RISING at relativistic energies : Ge detector array





- 15 EUROBALL cluster detectors
  - · 7 crystals each
  - · A total of 105 crystals
- · 8 MINIBALL detectors (end of 2004)
- · Wall-like array at forward angle
  - Large Lorentz boost (β~0.4)
  - Optimum Doppler shift correction
  - · Minimizing Doppler broadening





### New Shell Structure at N>>Z Relativistic Coulex in N=28-34, N=40-50 Nuclei



- · Sub-shell closure at N=34?
- Local maximum of 2<sup>+</sup> energy
   at N=32 in Cr isotopes



Coulomb excitation of  $^{56}Cr$  (N=32) and  $^{58}Cr$  (N=34): B(E2;2+->0+)

· Proposed by H. Grawe, P. Reiter, H. Hübel et al. Performed in May 2004



### Coulomb excitation of 54Cr, 56Cr and 58Cr

- Primary beam: <sup>86</sup>Kr at ~500 A MeV on the 4 g/cm<sup>2</sup> Be target
- Secondary beam: <sup>54</sup>Cr, <sup>56</sup>Cr and <sup>58</sup>Cr at 100 A MeV on the 1 g/cm<sup>2</sup> Au target



### Coulomb excitation of 54Cr, 56Cr and 58Cr

- Primary beam: <sup>86</sup>Kr at ~500 A MeV on the 4 g/cm<sup>2</sup> Be target
- Secondary beam: <sup>54</sup>Cr, <sup>56</sup>Cr and <sup>58</sup>Cr at 100 A MeV on the 1 g/cm<sup>2</sup> Au target





### Coulomb excitation of 54Cr, 56Cr and 58Cr

- Primary beam: <sup>86</sup>Kr at ~500 A MeV on the 4 g/cm<sup>2</sup> Be target
- Secondary beam: <sup>54</sup>Cr, <sup>56</sup>Cr and <sup>58</sup>Cr at 100 A MeV on the 1 g/cm<sup>2</sup> Au target

### B(E2:2+->0+) values :

•  $^{54}Cr: 14.6 \pm 0.6$  W.u. From NNDC, used as a normalization.

•  $^{56}Cr$  : 9.7 ± 2.6 W.u.

•  $^{58}Cr$  : 16.1 ± 3.4 W.u.

Preliminal !



## B(E2:2+->0+) of 54Cr, 56Cr and 58Cr



## B(E2:2+->0+) of 54Cr, 56Cr and 58Cr



### B(E2:2+->0+) of 54Cr, 56Cr and 58Cr



Indication of sub-shell closure at N=32?

→ Talk by A. Bürger in Zakopane, September

A. Bürger, Ph.D. thesis



### Lifetime measurement by the line-shape analysis

Monte Carlo simulation.  $^{132}$ Xe at 100 A MeV on the 0.3 g/cm² Au target



## Mirror symmetry of <sup>53</sup>Ni and <sup>53</sup>Mn, investigation of the fragmentation process



-> M.Bentley's talk
Ph.D. thesis, G.Hammond

### Investigation of the fragmentation process





### Investigation of the fragmentation process







### Investigation of the fragmentation process

Expected longer effective lifetime for low-lying states
 High excitation after fragmentation
 Feeding to low-lying states

Apparent lifetime -> Excitation after fragmentation
The fragmentation secondary target



60





- Lifetime measurement of <sup>32</sup>Mg and <sup>34</sup>Mg with the secondary fragmentation method.
- Proposed by P.Mayet et al.

# 4

- Lifetime measurement of <sup>32</sup>Mg and <sup>34</sup>Mg with the secondary fragmentation method.
- Proposed by P.Mayet et al.



# 1

- Lifetime measurement of <sup>32</sup>Mg and <sup>34</sup>Mg with the secondary fragmentation method.
- Proposed by P.Mayet et al.



# 1

- Lifetime measurement of <sup>32</sup>Mg and <sup>34</sup>Mg with the secondary fragmentation method.
- Proposed by P.Mayet et al.



# -

### Lifetime measurement with stacked target

- Lifetime measurement of <sup>32</sup>Mg and <sup>34</sup>Mg with the secondary fragmentation method.
- Proposed by P.Mayet et al.



Intensity ratio,  $\gamma_1 : \gamma_2 : \gamma_3 \longrightarrow \text{Lifetime}$ 

### GDR in exotic nuclei

- Giant Dipole Resonance (GDR).
  - Nuclear structure and effective NN interactions.
- Evolution of GDR strength toward light exotic nuclei.
  - Fine structures.
  - GDR at low energy.
- Proposed by A.Bracco et al for <sup>68</sup>Ni.



Relativistic RPA, Vretenar at al.

# -

### GDR in exotic nuclei

- Giant Dipole Resonance (GDR).
  - Nuclear structure and effective NN interactions.
- Evolution of GDR strength toward light exotic nuclei.
  - Fine structures.
  - GDR at low energy.
- Proposed by A.Bracco et al for <sup>68</sup>Ni.



Relativistic RPA, Vretenar at al.

### GDR in exotic nuclei





9 countries 38 institutions

### The local RISING team



## RISING at relativistic energies : FRS



## RISING at relativistic energies : Ge detector array





- 15 EUROBALL cluster detectors.
  - 7 crystals each.
  - · A total of 105 crystals.
- · 8 MINIBALL detectors (end of 2004).
- · Wall-like array at forward angle.
  - Large Lorentz boost (β~0.4).
  - · Optimum Doppler shift correction.
  - · Minimizing Doppler broadening.
- Energy resolution at  $\beta$ ~0.4.
  - · ~ 1.7% FWHM.
- Photopeak efficiency at  $\beta$ ~0.4.
  - ~3% without MINIBALL.
  - · 4~10% with MINIBALL.

# RISING at relativistic energies: CATE (CAlorimeter Telescope Array)



#### E

- · CsI detectors.
- · For mass identification.
- Mass resolution : ~1%.

### <sup>55</sup>Ni on <sup>9</sup>Be

E<sub>res</sub> [a.u.]

2000

1600

1400

1200



#### <sup>108</sup>Sn on <sup>197</sup>Au



#### ΔΕ

- · 0.3 mm thick Si detectors.
- · For Z identification.
- Position sensitive. Position resolution ~5 mm.



R. Lozeva, Ph.D. thesis

### 9 countries, 38 institutions.

### Institutions collaborating in RISING

| GANIL, Caen, France CSNCM Orsay, France IPN Orsay, France CEA Saclay, France                                                   | Univ. Demokritos, Greece                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLRC Daresbury, UK Univ. Keele, UK. Univ. Liverpool, UK Univ. Manchester, UK Univ. Paisley, UK Univ. Surrey, UK Univ. York, UK | Univ. Firenze, Italy INFN Genova, Italy INFN Legnaro, Italy INFN/Univ. Napoli, Italy INFN/Univ. Padova, Italy Univ. Milano, Italy Univ. Camerino, Italy |
| HMI Berlin, Germany Univ. Bonn, Germany GSI Dannstadt, Germany TU Dannstadt, Germany MPI Heidelberg, Germany                   | Univ. Lund, Sweden KTH Rockholm, Sweden Univ. Uppsala, Sweden                                                                                           |
| FZ Juelich, Germany Univ. Koeln, Germany LMU Muenchen, Germany TU Muenchen, Germany FZ Rossendorf, Germany                     | NBI Copenhagen, Dammark                                                                                                                                 |
| Univ. Leuven, Belgium                                                                                                          | IFJ Cracow, Poland Univ. Cracow, Poland IPJ Swierk, Poland Univ. Warsaw, Poland                                                                         |



### New Shell Structure at N>>Z Relativistic Coulex in N=28-34, N=40-50 Nuclei



- Neutron excess -> weaker surface slope.
- Reduced spin-orbit LS splitting.

Harmonic oscillator magic numbers.

J. Dobaczewski, et al. PRL 72 (1994) 981



### Proton-neutron monopole interaction

- Strongest in S=0 (spin-flip) and T=0 (isospin-flip) channel.
- Missing S=0 proton partners at N>>Z.
   Monopole shifts of neutron single particle states

T.Otsuka et al, PRL 87 (2001) 082502

## Secondary fragmentation experiment: Mirror symmetry on <sup>53</sup>Ni and <sup>53</sup>Mn

- Proposed by M.Bentley et al. Performed in October 2003.
  - Mirror symmetry on <sup>53</sup>Ni and <sup>53</sup>Mn.
    - Coulomb energy difference as a function of spins.
  - -> Talk by M.Bentley. Ph.D. thesis, G.Hammond.

